
A valuation framework for compound real
options

Steinar Ekern (steinar.ekern@nhh.no), NHH
Norwegian School of Economics, Helleveien 30, 5045 Bergen, Norway

Mark B. Shackleton (corresponding author, m.shackleton@lancaster.ac.uk)
Lancaster University Management School, Bailrigg, Lancaster, LA1 4YX, UK.

+44 1524 594131 (847321 fax)

Sigbjørn Sødal (sigbjorn.sodal@uia.no), University of Agder
School of Business and Law, PO 422, Kristiansand 4604, Norway.

May 2021

-1



A valuation framework for compound real op-

tions

Abstract: If a firm knows the decision cost of an operational change, an in-

vestment policy is possible. Such flexibility, e.g. to switch cashflows, is valued

by numerically customizing real option solutions at policy rules consistent

with decision costs. Comparative statics have also proceeded numerically

but we analyse these analytically. By presenting all boundary conditions as

a linear system, for different stochastic processes, we calculate decision costs

given assumed policies. To infer the one policy that matches actual deci-

sion costs, we demonstrate an iterative search algorithm using the analytical

power of our comparative statics in investment and switching decisions (99

words).

Keywords: Decision costs, optimal policies, comparative statics, smooth

pasting and discount functions. EFM 430, C61, G31.

• Highlights: Describes optimality conditions for switching in arithmetic

and geometric economies that are consistent with caps and floors.

• Lays out a framework for switching at assumed policy rules and solves

for decision costs that are consistent with these initial inputs.

• Evaluates the sensitivity and comparative statics of decision costs to

input rule levels and suggests an initial choice for policy rules suitable

for starting an iterative search.

• With the difference between calculated and target decision costs, we

use the analytical sensitivity in an iteration algorithm to find the target

policy and comparative statics that are consistent with known decision

costs.
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1 Introduction

Since the breakthrough of Black and Scholes [5] and Merton [27], option pric-

ing has made great strides in financial markets through the use of stochastic

processes and mathematics. In particular the risk neutral valuation method

of Cox, Ross and Rubinstein [11] etc. has allowed option claims to be valued

on a no arbitrage basis consistent with market prices.

This thinking permeated into corporate finance with the area of so called

“real options” (Myers [28]) mirroring the developments of traded options

with e.g. applications to operational switching given for example in Brennan

and Schwartz [6] and McDonald and Siegel [25]. This change in corporate

decision analysis was supported by texts following Dixit and Pindyck [15]

(e.g. Trigeorgis [35] and Brennan and Trigeorgis [7]) further developing and

refining the analysis underlying valuation in this area.

This stimulated work on areas such as industrial capacity (Pindyck [30])

and valuation of land (Capozza and Li [10]) but real options have also been

applied to marginal cost of capital (Abel, Dixit, Eberly and Pindyck [1]),

capital structure (Sarkar and Zapatero [32]) and mergers and acquisitions

(Lambrecht [23]). The analysis of competition, game theory and monopoly

has been subjected to real options thinking (e.g. Smit and Ankum [33] and

Pereira and Rodrigues [29]) as has thinking at all stages from growth (Kraft,

Schwartz and Weiss [22]) to exit (Alvarez [4]).

Although less has been written on flexible investment sequences, real com-

pound options and modularity have been studied (Ekern [19] modelled hys-

teresis with a finite number of repeated switches and Gamba and Fusari [20]

motivate and value project design using six modularity principles). Guthrie

[21] discussed the tradeoffs between scale and flexibility and similarly Dahlgren

and Leung [12] applied this to infrastructure.

Overall the real options approach has become widespread and this intro-

duction can only touch on the many articles in this area (see Lambrecht [24]

for a recent comprehensive survey and critique).

However, the conclusions of many of these papers rest upon comparisons

of investment dynamics and comparative statics that are derived for specific
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examples and numerical solutions to complex systems. This is because it is

rarely the case that the investment situation can be solved directly. Further-

more the results may depend on the choice of the stochastic process used

to drive the state variable (most papers use geometric Brownian motion but

some e.g. Alexander, Mo and Stent [3], use an arithmetic process).

We wish to progress analytically, particularly for comparative statics. To

do so, we proceed using the discount factor approach of Dixit, Pindyck and

Sødal [16] and Sødal [34]. This relates the value an option at any arbitrary

state (or time) to its value at a boundary condition, using a function of the

separation of that state from the boundary (which proxies for the stopping

time taken).

We extend this approach to embrace the first order condition known as

smooth pasting and we consider the second order condition of double smooth

pasting. The easiest situations in which to develop the method are that of

reversible caps/floors which are limiting cases of investment hysteresis Dixit

[14] or costly reversibility (Abel and Eberly [2] and Eberly and van Mieghem

[18]). However, we show how to extend this method to many levels.

Our contribution is an investment framework that solves for compound

option values and decision costs directly from assumed or input policy rules.

By taking care with the necessary conditions at policy points (boundaries)

this method is applied to multiple switching points.

Our method allows the comparative statics to be evaluated analytically

for any input policy, not numerically as is the case in the literature. We

use the analytical sensitivity of decision costs to policy assumptions in an

iterative algorithm that seeks the single policy that matches known decision

costs. This allows a wider range of real option situations to be explored with

greater analytical tractability.

We start with one policy rule with two way switching, under arithmetic

and geometric processes (Section 2). Then we extend to two policy rules and

decision costs and solve for the latter as a function of the former, including

comparative statics (Section 3). Then we tackle the search iteratively by

suggesting a policy start point as well as an updating algorithm in Section

4 that converges to the particularly policy that matches target costs. In
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section 5 we detail two way switching with a long floor, short cap, i.e. collar

example. We conclude in Section 6.

2 One policy rule R & decision cost X

2.1 Method

The first policy decision we consider is simple. If investment or divestment

of a known present value cost of magnitude X† gains or releases an asset

with stochastic value, at what value threshold R† of this stochastic asset is

it optimal for continuous and fully reversible switching to occur? The dagger

symbol† is used to label both the known decision cost X† and target i.e.

unknown policy threshold R†.

Typically the analysis of investment and divestment situations presents

the actual decision cost X† and expects to determine the value maximising

policy threshold R†. In some situations this is possible directly but generally

it is not, so we frame the process the other way around.

If investment and divestment decisions were taken at a general rule R at

which value maximisation was ensured by certain conditions, what present

value decision costs X(R) would be consistent with that choice of R for the

policy rule? To do this we employ the necessary conditions for the policy R

to optimal given X (during the numerical example in section 4 we also test

for sufficient conditions for R to maximise value given X).

Knowledge of the explicit function X(R) using these conditions allows

comparative statics such as ∂X(R)
∂R

to be evaluated explicitly.

Although R represents one of many optimal policies and X(R) its cost,

they do not carry the dagger symbol† because they are different to the special

target policy pair X†, R†. However if we can calculate values X(R) that are

consistent with any input R, this can be used iteratively until X(R†) = X†

is found.

For any input policy rule R, we ensure it follows necessary conditions to

solve for the function X(R) (other conditions can be tested whilst searching).

This also allows determination of the sensitivity of X to each choice R.

3



An initial guess R will not generally be consistent with the actual decision

costs X† but the calculated error X(R)−X† is informative of the unknown

difference R−R†.
Using this sign and magnitude of this error we iterate from that choice of

R toward the target value R† using the sensitivity information in the function
∂X(R)
∂R

. This allows us to converge on the solution to the function X(R†) = X†

even though it is not invertible i.e. R(X) cannot be found explicitly.

2.2 Setup

We suppose there is a stochastic value Πt (derived from a stochastic cashflow

πt) that evolves over time t. Initially, we include the time subscript t as a

reminder that Πt is dynamic.

In this section there is just one policy rule for value switching, R (without

subscript1), and the state variable can encounter this one policy value at

many possible times t i.e. Πt = R.

This section is concerned with the proximity of the stochastic process Πt

to the single policy value R and its crossing. Each time the policy rule is

crossed, a fixed lump sum decision cost X is either invested, or retrieved

(equivalent to valuing caps and floors on flows). This enables value to be

derived from continuously switching between the stochastic value Πt (and its

dividend) and the non-stochastic lump sum X (and its risk free funding) on

every occasion that Πt = R. This flexibility can be represented using two

switching options above and below R, both of which are exercised at R.

This approach is consistent with a cashflow approach. At Πt = R the

cashflow on the stochastic asset is a percentage dividend yield on value R

and the cashflow on X is the continuous risk free rate r on X, i.e. rX. If

the yield rate on the asset and the risk free rate differ, then the cashflows

can differ upon switching even if R,X are equal.

If the target policy is to switch when the cashflow on Πt at R matches

1In later sections once the method is established and it necessary to track multiple
policy thresholds, subscripts are used to indicate their level e.g. R1 < R2.. etc. To avoid
confusion, the state variable is then simply Π. It is important to note that the subscripts
on R are not used to track individual times or sequences.
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that of a target fixed cashflow rate, rX† (the risk free rate r on X†), that

can also be accommodated.

When matching values or cashflows, the option values for switching above

and below the decision rule R may differ but total value maximisation in-

cluding options can be achieved by optimal switching at any general level.

2.3 Policy input

Therefore, for any given value choice e.g. an initial guess of rule R = $1

for the policy, the objective of this paper is to calculate the non-stochastic

decision cost X that is consistent with that R being optimal, i.e. to find

decision cost X(R) as a function of policy choice R.

With an instantaneous cashflow rate of πtdt, the value Πt is consistent

with a perpetual integral of the expected future (risk neutral) of these flows

discounted, with the asset growth and yield rates constrained by the risk free

rate. Also in terms of flows, X can be represented as a perpetual integral

of fixed risk free flows (flows within the integral for X are rXdt for every

infinitesimal time dt).

The value of such flexibility anticipates each crossing that Πt makes over

the fixed value threshold R, i.e. it captures the expected present value benefit

from the cashflow changes before they actually occur.

These options can be thought of as purchases and sales conditional upon

the stochastic process value reaching the policy point R.

In this section, we define the value that anticipates flexibility V (Πt) as

that in excess of the immediate maximum of the two local payoffs max(Πt, X)

and the total value V (Πt) + max(Πt, X), i.e. flex plus payoff, is given in

equation (1).

V (Πt) + max(Πt, X) = C(Πt) +X for Πt below or at R

= P (Πt) + Πt for Πt above or at R
(1)

When Πt ≥ R, the flexibility value is derived from the ability to Put Πt

and receive X so we label it P (Πt). When Πt ≤ R, its value is derived from

the ability to Call Πt by giving X so we label this C(Πt). These put and call
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options have no final expiry date and are potentially perpetual. Whilst they

have zero value at a limiting boundary (zero or infinity), their value depends

upon their early exercise switching payoff at the policy boundary R. In this

section, they have a common decision cost X which is viewed as the exercise

price on both put and call option.

In this perfectly reversible situation, the put and the call only exist at the

same time at the instant Πt = R (in the next section with R1, R2 they can

both exist with a region) but at the single threshold R they are exchanged

for each other.

If a policy R is to be optimal and consistent with decision costs X, then

total value either side of the policy threshold must match and the two lines

of equation (1) will be equal at Πt = R. The necessary first order condition

is smooth pasting (Dixit and Pindyck [15]), which we address. Because in

this section it is perfectly reversible, a second order condition will hold too

also.

Only in special cases will the value of the put and call be equal at the

policy rule Πt = R, i.e. generally C(R) 6= P (R). This is because the options

account for immediate cashflow and other differences. The impact can be

seen in the value matching equation (2) which makes the right hand sides

of equation (1) explicit by tracking value below R (where the call is un–

exercised) matching values above R, where the put is un–exercised. At this

rule point, both options are exercised as a passing exchange of their values

C(R), P (R).

C(Πt) +X = P (Πt) + Πt at Πt = R i.e. C(R) +X = P (R) +R (2)

Now we can see that even with the perfect reversibility in this section, if the

options have different values at the policy rule, the fixed sum decision cost

X will not equal the policy rule R i.e. C(R)− P (R) = R−X 6= 0.

2.4 Conditions for optimal exercise at Πt = R

For equation (2) to represent optimal exercise of both the call on the way up

and the put on the way down, first and second order conditions must hold.
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Firstly, the equation must smooth paste, that is have the same sensitivity

to Πt on either side. Secondly, if reversible, i.e. can go both ways at the

same threshold, it must doubly smooth paste (Dumas [17]) not just in the

first derivative with respect to Πt but in the second derivative too.

The first order condition for maximal total value on both sides of equation

(2) i.e. smooth pasting, ensures an equivalent response to Πt before and after

instantaneous action at R. That is to say that when the put flexibility P (Πt)

is used to change Πt to X (when crossing R from above), the net sensitivity

with respect to Πt should balance, including that of the call flexibility C(Πt)

generated (and vice versa on the way up).

How to implement smooth and double smooth pasting depends on the

type of economy that is modelled. Firstly we do this for arithmetic flows and

values.

2.5 Arithmetic flows

The simplest choice for stochastic value Πt would have it depend in a linear

manner on a driftless arithmetic Brownian motion for a cashflow rate πt.

The rate πt has units of dollars per year and for the driftless situation it

gives a stochastic perpetual capital value Πt = πt/r measured in dollars (r,

the continuous risk free rate, is measured in reciprocal years).

For risk neutral Brownian increments dWt, equation (3) shows; the stochas-

tic driver (a function of dollar risk rate Σ and Brownian increments dWt),

its driftless risk neutral expectation, its squared change and the no–arbitrage

condition for a time homogeneous option claim V (Πt) (where we have used

V ′′(Πt) for the second derivative with respect to Πt).
2

dπt
r

= dΠt = ΣdWt ERN [dΠt] = 0 (dΠt)
2 = Σ2dt rV (Πt) =

1

2
Σ2V ′′(Πt)

(3)

2The condition at the end of equation (3) is a Bellman equation from the self funding cri-

teria rV (Πt)dt = ERN [dV (Πt)] and Ito’s Lemma dV (Πt) = ∂V (Πt)
∂Πt

dΠt + 1
2
∂2V (Πt)
∂Π2

t
(dΠt)

2
.
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These are solved by general solutions V (Πt) ∝ e±bΠt . Thus the options

C(Πt) and P (Πt) have value proportional to ebΠt and e−bΠt where the coeffi-

cients ±b satisfy 1
2
Σ2b2 = r.

Note that the units of b are reciprocal dollars and the units of risk Σ2 are

dollars squared per year (unlike σ which we use in the next geometric section,

expressed as % per year). We assign a value of Σ2 = ($1)2 p.a. which leaves

Σ = $1 comparable over a year to the level at which we also set R = $1.

This means that the two option sensitivities ±b = ±0.20$−1 are consistent

with a continuous risk free rate of r = 2%.

2.6 Discounting options for arithmetic processes

We chose to represent option values in a manner consistent with the discount

factor approach of Dixit, Pindyck and Sødal [16]. This means that any

prior option value is considered to be a discounted fraction of its payoff at a

boundary rule. The payoffs are the non-stochastic values C(R), P (R) and the

discounted values of a dollar at R, presented as a function of the stochastic

value Πt, are e−b(R−Πt), e−b(Πt−R) respectively for call and put.

This means that before the boundary encounter (far away from their

common boundary R, options tend to zero) the options have stochastic values

given by:-

C(Πt) = C(R)e−b(R−Πt) Πt ≤ R and P (Πt) = P (R)e−b(Πt−R) Πt ≥ R

2.7 Arithmetic single and double smooth pasting

We label single and double differentiation with respect to the stochastic state

variable with a dash′ and double dash′′ e.g. ∂C(Πt)
∂Πt

= C ′(Πt) and ∂2C(Πt)

∂Π2
t

=

C ′′(Πt). Single and double differentiation of the state variable with respect

to itself give 1,0 i.e. Π′t = 1 and Π′′t = 0.

Next in equation (4) we present all necessary conditions in three columns;

value matching, smooth pasting and double smooth pasting, from left to

right. The two rows do this for dynamic Πt in the first line and evaluated at
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Πt = R in the second lines of equation (4).

C(Πt) +X = P (Πt) + Πt C ′(Πt) = P ′(Πt) + 1 C ′′(Πt) = P ′′(Πt)

C(R) +X = P (R) +R bC(R) = −bP (R) + 1 b2C(R) = b2P (R)

(4)

The first order condition (centre column) brings a multiplier b in front of

the option values and renders the reference asset to unity and the second

differentiation (right column) brings another factor b in front of the options

but eliminates the reference asset (its double differential is zero). Note that

the call has positive slope b > 0 and the put negative slope −b < 0 on Πt, but

they both have positive convexity b2 on Πt. Also the first and second order

conditions have units other than dollars (the units in value matching) for

these arithmetic flows (in the geometric section we ensure that all conditions

are expressed in dollar units).

Solving backwards in this symmetric and driftless situation, the call and

the put have equal value (from the second order condition, last column of

equation (4)) because their second derivative and convexities are equal. From

the condition in the middle column, this value is a half of 1/b (a dollar value),

i.e. $2.5 in this case, and finally X = R = $1, again because of symmetry.

For R = $1 the solutions to the call and put (C(R), P (R) which are

symmetric and equal in value) are both $2.5 and the option “strike” prices

or decision costs consistent with this reversible setup are also X = $1. Using

a drifted motion would break the symmetry of put and call, this comes up

in the next section where we also put each of the three conditions into the

same dollar units within the geometric economy.

2.8 Geometric economy

In the arithmetic economy, the reference state variable could become zero or

negative on bad news. It is therefore not suitable for representing an asset

since it could become a liability. Following Samuelson [31] and McKean [26],

option pricing has worked with geometric processes for positive assets which

are incapable of becoming liabilities. Shares and in particular stock indices
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are bounded at zero and investment analysis uses regressions of percentage

changes (not dollar changes) to test for return sensitivity.

Consequently the majority of real options papers use a geometric Brown-

ian motion to drive values from capitalised flows i.e. Πt = πt
δ

, with a dividend

yield parameter δ and risk neutral drift rate r− δ. Equation (5) shows; per-

centage changes in the state variable(s), the expected risk neutral drift and

total volatility rates in the first row.

dπt
πt

=
dΠt

Πt

= (r − δ)dt+ σdWt
ERN [dΠt]

dt
= (r − δ)Πt

(dΠt)
2

dt
= σ2Π2

t

rV (Πt) = (r − δ)ΠtV
′(Πt) +

1

2
σ2Π2

tV
′′(Πt) (5)

The second line of equation (5) is the time homogeneous Bellman condition

derived from the self financing condition (in footnote (2)). Now the option

solutions are given by equation (6) along with the condition on their beta

parameters β.

C(Πt) = C(R)

(
Πt

R

)βC
for Πt ≤ R

P (Πt) = P (R)

(
Πt

R

)βP
for Πt ≥ R

1

2
σ2β(β − 1) = r − (r − δ)β for both betas β = βC , βP (6)

The widely used option constants are explicitly labelled betas, βC > 1 for

the call and βP < 0 for the put.

These are betas3 because they represent the % response on each option

(not dollar as before) to a % change in the state variable (previously b was

linked to the dollar response and had units of $−1) and these betas βC , βP

3We assume the geometric reference process Πt is traded and can be used for replication
of the call, put or other option claim. E.g. if Πt is the unit beta market portfolio (βΠ = 1),
then βV is the market beta of V (Πt). Otherwise βV is the beta relative to the asset Πt

and other betas would be scaled by βΠ 6= 1. Without losing generality we assume Πt to
have a beta of one, i.e. Πt is the tradeable reference pricing asset and βC , βP are relative
to it.
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are dimensionless.4

To represent option values in a manner consistent with the discount fac-

tor approach of Dixit, Pindyck and Sødal [16] where any prior option value

is considered to be a discounted fraction of its payoff at a boundary, the

payoffs are again C(R), P (R) but the discounts presented as a function of

the stochastic value Πt are now given in equation (7).

C(Πt) = DC(Πt, R)C(R) where DC(Πt, R) =

(
Πt

R

)βC
for Πt ≤ R

P (Πt) = DP (Πt, R)P (R) where DP (Πt, R) =

(
Πt

R

)βP
for Πt ≥ R

(7)

We label these functions DC(Πt, R) for the call and DP (Πt, R) for the put

discount; note that the function’s argument contains the rule at which the

discount attains unit value (i.e. DC(R,R) = DP (R,R) = 1). Unlike the

exponential discounts in the arithmetic section, when these are differentiated

with respect to Πt, their dependence on Πt changes, e.g. in the first line of

equation (8).

C ′(Πt) = D′C(Πt, R)C(R) = βC
ΠβC−1
t

RβC
C(R) or

C ′(Πt)Πt = D′C(Πt, R)C(R)Πt = βC
ΠβC
t

RβC
C(R) = βCC(Πt) (8)

However, if we differentiate and multiply by Πt as in the second line of

equation (8), then the resulting quantity can be interpreted as the beta of

the call times its value at any level. If smooth pasting is implemented this

way, the constants βC , βP multiply option values in dollars and the smooth

pasted condition has the same units as the value matching condition.5

4The betas satisfy βC , βP = 1
2−

r−δ
σ2 ±

√(
r−δ
σ2 − 1

2

)2
+ 2r

σ2 . Setting r = δ = σ2 simplifies

the two solution betas to βC = 2, βP = −1 and equates the convexities of both to γ = β(β−
1) = 2. However setting σ2 = 2r = 4δ

3 gives βC = 2, βP = −0.5 and γC = 2, γP = 0.75.
We prefer to fix βc, βP rather than choose base parameters r, δ, σ since betas directly affect
single and double smooth pasting. Note that one degree of freedom remains.

5We aim for coefficients in value matching, smooth and double smooth pasting that
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2.9 Smooth and double smooth pasting

Therefore in the geometric economy, we effect smooth pasting by differentiat-

ing items on both sides of equation (2) with respect to Πt and then multiplying

across all elements by Πt to re–scale. That is to say instead of taking ∂[.]/∂Πt

across components as for the arithmetic case, we take ∂[.]/∂Πt ×Πt labelled

[.]′Πt (where [.]′ indicates differentiation of bracket contents with respect to

Πt).

It is important to note that this rescaling is only evaluated at the instant

that smooth pasting occurs Πt = R. Each switching option has a beta at

levels other than a policy rule but it only the measurement of betas at a

rule determine optimality. Although smooth pasting is implemented as [.]′R,

conceptually it is [.]′Πt at the moment when Πt = R.

When this is applied to non-stochastic X, a zero results [X]′Πt = 0 and

when it is applied to Πt the result is [Πt]
′Πt = Πt itself because these two

have sensitivities of 0,1 respectively. We interpret these sensitivities as betas

consistent with market percentage returns. This works for any asset V (Πt)

because βV is ∂V (Πt)/V (Πt) divided by ∂Πt/Πt, or it is the relative sensi-

tivity of percent changes in V (Πt) divided by percent changes in Πt.

Applying scaled differentiation to both representations of value means

taking [V (Πt)+max(Πt, X)]′Πt. Applying this to equation (2) (which was not

specific to arithmetic Brownian motion) generates the first order condition,

equation (9), which contains products of options and their betas at stochastic

level Πt and rule R consistent with geometric Brownian motion.

Πt + βPP (Πt) = βCC(Πt) at Πt = R i.e. R + βPP (R) = βCC(R) (9)

In the geometric economy, the advantage of equation (9) compared to

are consistent with a second order expansion of percentages in V (Πt) against percentages
in the reference asset Πt (N.B. γV = βV (βV − 1) for GBM).

dV (Πt)

V (Πt)
≈ V ′(Πt)Πt

V (Πt)

dΠt

Πt
+

1

2

V ′′(Πt)Π
2
t

V (Πt)

(
dΠt

Πt

)2

≡ βV
dΠt

Πt
+
γV
2

(
dΠt

Πt

)2

V ′(Πt)Πt ≡ βV V (Πt) V ′′(Πt)Π
2
t ≡ γV V (Πt)
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differentiation without scaling, is that it gives βCC(Πt) etc. which are beta

weighted values that use the same terms (and units) as the value matching

equation. When smooth pasting the lines of equation (2) at Πt = R this way,

the betas βC , βP in equation (9) multiply values to equate the sum products

of betas and values.

Where switching can occur frequently and reversibly, “double smooth

pasting” must hold where the second derivatives across both sides of value

matching align too Dumas ([17]). This is achieved using the second deriva-

tive, a gamma γV , with respect to Πt i.e. [.]′′. Again we chose to re-scale,

this time by Π2
t i.e. taking [.]′′Π2

t , which produces a gamma multiplied by a

value i.e. γV V (Πt) (where V (Πt) is either the put or the call). At the instant

of switching, this is applied as [.]′′R2.

When double differentiation and scaling is applied to the value matching

equation, not only does this knock out the X but it also knocks out the linear

claim Πt too i.e. [Πt]
′′Π2

t = 0. This means that the double differentiated

version of value matching contains the options alone. The double smooth

pasting elements, weighted by gamma convexity, are given in equation (10).

γPP (Πt) = γCC(Πt) at Πt = R i.e. γPP (R) = γCC(R) (10)

Now under GBM, equations (2), (9) and (10) present linear combinations

of option values with the betas playing the role of weights on the same

values C(R), P (R) at the policy rule. Their solutions including the analytic

comparative static for X(R) are:-

C(R) =
βP − 1

βC(βP − βC)
R P (R) =

βC − 1

βP (βP − βC)
R

X(R) =
γC − γP

βCβP (βP − βC)
R +R

∂X(R)

∂R
= 1 +

γC − γP
βCβP (βP − βC)

and in the symmetric case when convexities βP = βC are equal, X = R and
∂X(R)
∂R

= 1.

Using investment betas and gammas at the boundary, we found the value

X(R) and sensitivity to the choice of R ∂X(R)
∂R

along with option constants
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C(R), P (R). Here these are all in a linear relationship, where the choice of R

determines the scale. Later we will show other situations with multiple costs

and thresholds, e.g. X1(R1, R2), X1(R1, R2) with their cross dependencies.

2.10 X(R) for different inputs

To complete the illustration here using the linear system for three unknowns

X(R), P (R), C(R) with three equations, we show two sets of inputs for sym-

metric and non–symmetric cases. Firstly we show βC = 2, βP = −1 and

γC = γP = 2 so that:-

C(R) +X = P (R) +R 2C(R) = −P (R) +R 2C(R) = 2P (R)

(11)

i.e. the put and the call are symmetric and equal, both equal to a third of

the rule level R and due to the symmetry, the decision cost X(R) = R.

However for βC = 2, βP = −1
2

and γC = 2, γP = 3
4

(where the cash

dividend yield δ and risk free r rate differ), the values satisfy equation (12).

C(R) +X = P (R) +R 2C(R) = −1

2
P (R) +R 2C(R) =

3

4
P (R).

(12)

The relative value of the put and the call are established from the last column

of each set, which say that the dollar weighted convexity on the call must

match that on the put γCC(R) = γPP (R). The absolute value of put and call

are then determined in the middle column of these equations by the choice

of R that fixes the scale of the setup.

This sheds light on why decision costs are subordinated to option values

and thresholds in the solution process, they appear in the value matching

conditions alone (left hand column) and drop out of the smooth pasting and

double smooth pasting conditions.

For the second situation, Figure 1 shows the values of the claims (y axis)

against the stochastic value Πt on the x axis. R = 1 was an arbitrary choice

input and X = 1.5 its output. On the left when Πt < R = 1.0, the flexible

14



Figure 1: Put & call claims (βC = 2, βP = −1
2
) for R = 1 implying X = 1.5.

situation holds X = 1.5 in cash (green, earning r) and benefits additionally

from the call (yellow). On the right of Figure 1 when Π > R = 1.0 the

flexible situation holds with the stochastic asset (red) and in addition the

put (in blue). Due to the asymmetry and different gammas, when switching,

the put ($0.8) is worth more than the call ($0.3), but the resulting X = 1.5

takes up the difference at R = 1.0.

The next sub–section (and Figure 2) show a choice that matches a target

value of X = 1.0
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2.11 Finding R† given X†

For the symmetric option inputs the call and put where equal.6 For the

option inputs (βC = 2, βP = −0.5) and R = $1 the system was solved by

P (1) = $0.8, C(1) = $0.3, X(1) = $1.5.

When we wish to find what policy is consistent with X† = $1 instead,

here it is trivial to find R†. The relative values of the options do not change

but their absolute values must change to accommodate a different R†. In the

first line we can see that if X is to be scaled down from $1.5 to X† = $1.0,

R must be scaled from $1.0 to R† = $2
3

so that C†(2
3
) = $1

5
and P †(2

3
) = $ 8

15
.

This situation is shown in Figure 2 which has the same betas and gammas

as Figure 1, but has shifted the decision rule left to R = 2
3
. This lowers the

imputed value of X to its desired value of $1.

It is important to note that both decision rules $R = 1 (Fig 1) and R† =

$2
3

(Figure 2) meet necessary smooth and double smooth pasting conditions,

but only the second is consistent with the target decision costs X† = $1.0

(the first is consistent with X = $1.5). The smooth and double smooth

properties of flexibility value can be seen in both figures where the yellow

and blue lines meet.

From an assumed policy rule R, we have solved for option values at that

decision rule or boundary (C(R), P (R) represent the solution constants, e.g.

as recommended in Dixit and Pindyck [15]). Between policy rules the dis-

count functions give option values for stochastic value Πt 6= R. In the ex-

amples given so far, the constants e.g. C(R) scale with R, but this is not to

say that the option values themselves increase with Πt. As mentioned, away

6For the single threshold case when γC = γP , the dividend yield δ and the risk free rate
r were equal. Then call C(R) and put P (R) at the rule were and the implied decision cost
X the same as the decision rule R. Equation (1) is interpreted as an integral of discounted
expected cashflows that are conditioned on the stochastic level Πt using indicator func-
tions 1Πt>R and 1Πt<R in an expression like

∫∞
t
ERNt [πs1Πs>R + x1Πs<R] e−r(s−t)ds =∫∞

t
ERNt [max(πs, x)] e−r(s−t)ds where x = rX is the running interest expense on de-

cision cost X and πt = δΠt is the cash dividend rate on stochastic asset Πt. This
is an integral of (out of the money) caplets or floorlets and the call and put op-
tions C(Πt) and P (Πt) can be thought of as (out of the money) Cap and a Floor i.e.
V (Πt) + max(Πt, X) = Floor(δΠt, rX) + Πt or Cap(δΠt, rX) + X with r = δ. If r 6= δ
then X 6= R and switching occurs at a different cashflow condition where a different
balancing payment is required on switching (γC 6= γP ).
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Figure 2: Put and call claims (βC = 2, βP = −1
2
) for R = 2

3
implying X = 1.

from rule R options are non-linear (discount) functions of the state variable

e.g. C(Πt) = DC(Πt, R)C(R).

It is the scale of the set up and all options that increases linearly with R;

passage within the system is tracked by Πt.

With two thresholds R1, R2, the situation would scale if both move to-

gether but if only one moves, it would not. Since we require multiple thresh-

olds, we will rely on matrix algebra to solve this linear decision system.

Therefore we need to conduct multiple value matching and smooth pasting

using conditions place in vectors e.g. R = [R2;R1].

3 Policy rules R1, R2 & decision costs X1, X2

Here we drop the time subscript on Πt using Π instead and reserve subscripts

for the decision rules R1, R2 etc. These rules increase in level with their

subscript e.g. R1 < R2. Although the stochastic process is now labelled Π,

it should not be forgotten that it is dynamic when comparing its value to

the two threshold rules. As was the case in the last section, the focus is on
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proximity of Π to each rule and not the times at which contact with the

boundary occurs Π = R1 or Π = R2.

In this section, the prior result is extended by separating the up and down

switching rules, an approach that is common in hysteresis (Dixit [14]). So

far they both occur at the same rule R but now we explicitly separate the

transitions, up at R2 and down at R1. This allows the compound option

approach for V (Π) to include an overlap region between the two rules R1 <

Π < R2, in this region we assume that the prior state from last boundary

contact persists.7

Thus we examine general rules R1, R2 at which flexibility is exercised, i.e.

Π = R1 or R2 aiming to solve for the decision costs X1(R1, R2), X2(R1, R2)

that would be committed at R1, R2 resp. It could be the case that exercising

the cap or the floor incurs a sunk cost at each switch time; if this requires

funding it increases the required benefit upon exercise, delaying it.

With R1 < R and R < R2, we can think of the last section as a limiting

case when both new rule levels converge to R1 = R = R2 so this method

should be able to recover the same result as in the prior section. However

with separation, the target decision costs X†1 < X† < X†2 at the rules will be

different to the X in the prior section, e.g. they might follow X†2 = X† +K

and X†1 = X† −K where K > 0 represents a known frictional present value

cost payable on both transitions.

This approach requires two value matching equations; in equation (13),

we place flexibility value immediately before a transition on the left and im-

mediately after, on the right. The value difference associated with cash flow

changes go on the right, with positive values for sums gained and negative

for those lost. Since we are fully switching between floating (Π) and fixed

(X), we either gain R2 or lose R1 and −X2,+X1 are interpreted as the fixed

decision costs incurred there. We also double the number of call and put

option constants that must be tracked; C(R1), C(R2), P (R1), P (R2).

7With separate rules, the representation is
∫∞
t
ERNt [δΠs1Πs>R1

+ rX1Πs<R2
] e−r(s−t)ds.

Where the state variable is a region that satisfies two indicator functions, it is the last
one with which it had contact that takes precedent (so they remain mutually exclusive).
With different switching levels, it becomes harder to represent this with cap and floor
notation.
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Since Π(t) cannot equal both R2 and R1 at the same time, these conditions

occur at different times (t) but they have the same economic meaning (value

matching) so grouping them is beneficial. Note that ∆ is a matrix (defined

in footnote 8) that produces changes in cashflow patterns at the policy rules.

C(R2) = R2 −X2 + P (R2)

P (R1) = X1 −R1 + C(R1)

H = ∆(R−X) + S

(13)

This stacking8 also requires option values at the rules, these are placed

in vectors labelled Harvest values in H (on the left) and Seeds in S on the

right of equation (13). These contain call and put option values C(Π), P (Π)

evaluated at the relevant value of Π, i.e. Π = R2 and Π = R1 giving C(R2),

and P (R2) and C(R1), P (R1).

Vector ∆(R−X) carries both the values of the floating flows gained or

lost and the fixed flows too i.e. a net gain on the switch going up of R2−X2

and recovery of X1 −R1 on the down switch.

The top row of equation (13) shows the call option with value C(R2) (in

H) being harvested (on the left) to change the asset values R2 −X2 on the

right plus seeding the put option P (R2) (which is less than P (R1) in the next

row).

The bottom row of each vector is the application of value matching at

Π = R1, the put (in H) is harvested with value P (R1) to release Π and lose

value R1, the present value of costs −X1 are spared (in X) and option C(R1)

8Vectors below their labels are designed to display value matching when read across
corresponding entries in each row.

H = ∆R−∆X + S[
C(R2)
P (R1)

]
=

[
R2 −X2

−R1 +X1

]
+

[
P (R2)
C(R1)

]
Since the change in value of assets occurs at known asset values, these can be expressed
through matrix, vector ∆,R where ∆ is a matrix that captures the changes at the vector
of rules R.

∆R = ∆ R[
R2

−R1

]
=

[
1 0
0 −1

] [
R2

R1

]
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(in S) is re–seeded with lesser value than its harvest C(R2).

We have taken care to make each row carry items relating to rules at

R2, R1 respectively and also to place options into one of two vectors that

identify if they are harvested or seeded. Having H,S like this is useful (more

so than carrying the calls and puts in separate vectors, say C,P) because

we now relate the value of option seeds to those at their harvesting using a

2× 2 discount matrix.

In equation (14), the discount factors from the right of these equations

(7) have been fixed and placed into a discount matrix D that allows option

seed and harvest values in vectors S,H from equation (13) to be related.

S = D H[
P (R2)

C(R1)

]
=

[
0 DP (R2, R1)

DC (R1, R2) 0

] [
C(R2)

P (R1)

]
(14)

This product between a matrix and a vector in equation (14) expresses

the growth process from seed to harvest. Due to the rules of matrix multi-

plication, unlike equation (13) it is not read directly row wise (C(R2) does

not multiply DP (R2, R1)), but it ensures that seed values of each option are

discounted versions of values when harvested.

Harvesting of each option always occurs after seeding (or at the same time

in the limit as rules converge) but the discount factor takes into account the

time value associated with waiting until the next action.9

Although we doubled the number of option contants by taking their value

at two points, equation (14) compensates with two more conditions that must

be satisfied.

9For time t and value Πt (below the call or above the put rules R2, R1) if the harvests
tH > t occur when Πt hits the next put rule R1 = ΠtH or next call rule R2 = ΠtH the
discount factors can also be derived using stopping times but discount factors integrated
out random harvest (stopping) times tH .

DC (Πt, R2) = ERNt

[
e−r(tH−t)

∣∣∣ΠtH = R2

]
DP (Πt, R1) = ERNt

[
e−r(tH−t)

∣∣∣ΠtH = R1

]
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We also need two versions of equation (9) in vector form that match

value weighted betas via scaled smooth pasting. To implement scaled smooth

pasting across all rules, in equation (15) we place the betas into two matrices

βH, βS that pre-multiply the harvest and seed option vectors H,S.

βH H = ∆R + βS S[
βC 0

0 βP

][
C(R2)

P (R1)

]
=

[
R2

−R1

]
+

[
βP 0

0 βC

][
P (R2)

C(R1)

]
(15)

Equation (15) captures scaled smooth pasting at the two rules because the

top and bottom lines in it are equivalent to (9) evaluated at Π = R2 and Π =

R1 respectively. The change in value vector on the right, which contained

floating and fixed items, is now just ∆R because the fixed elements have

zero beta.

There is no perfect reversibility here and no double smooth pasting, but

in the limit as R2 approaches R1 this system will return the same results as

Section 2. The two smooth pasting conditions become identical but replacing

one condition with γCC(R) = γPP (R) for double smoothness restores the

necessary number of conditions.

3.1 Solving for S,H

Now we have three matrix equations, equation (15) smooth pastes at both

thresholds, equation (14) discounts both seed to harvest values and equation

(13 and its footnote) matches values at both rules.

For input decision rules R1, R2 etc. S,H,X form a linear system in R and

the option constants used in the other elements. Equation (16) also shows

the solution for X, the cost or option strike vector at the end.

H = [βH − βSD]−1∆R S =
[
βHD−1 − βS

]−1
∆R ∆(X−R) = (D− I)H(16)

These expressions are general and can hold even if there are more than two

levels (see the Appendix). The harvest option (vector) is an inverse matrix
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multiplication of the change in cashflows at the boundaries.

H = [βH − βSD]−1 ∆R[
C(R2)

P (R1)

]
=

[
βC βPDP (R2, R1)

βCDC (R1, R2) βP

]−1 [
R2

−R1

]
(17)

Equivalently a beta matrix incorporating future discounted beta, applied to

the vector of options harvested, gives the change in cashflow vector.

∆R = βH − βSD H[
R2

−R1

]
=

[
βC βPDP (R2, R1)

βCDC (R1, R2) βP

] [
C(R2)

P (R1)

]
(18)

Either way it can be seen that smooth pasting at one boundary incorporates

the beta of the immediate option but also anticipates and incorporates a

discounted version or value weighted beta from the other boundary, e.g.

R2 = βCC(R2) +βPDP (R2, R1)P (R1). The same is true at the other rule R1

where similar relationships hold for the seed vector S and ∆R.

The determinant of the inverse [βH − βSD]−1 is needed, which for the two

level case is Det = βCβP (1− (R1

R2
)βC−βP ).

For the two levels in this example, the solution for ∆(X(R)−R) is shown

below in equation (19) from the system matrix M(R) = (D− I)(βH − βSD)−1

which includes this determinant.

∆(X−R) = M(R) ∆R[
X2 −R2

R1 −X1

]
= 1

Det

[
βC(R1

R2
)βC−βP − βP (βC − βP )(R2

R1
)βP

(βP − βC)(R1

R2
)βC βP (R1

R2
)βC−βP − βC

] [
R2

−R1

]
(19)

For the decision costs explicitly, i.e. ∆(X(R)−R) it can be seen that al-

though X(R) is possible to evaluate, the inverse R(X) (which we would like)

is not possible to solve. Solving for X(R) in vector form gives equation (19).[
X2 −R2

R1 −X1

]
=

1

Det

[
R2(βC(R1

R2
)βC−βP − βP )−R1((βC − βP )(R2

R1
)βP )

R2((βP − βC)(R1

R2
)βC )−R1(βP (R1

R2
)βC−βP − βC)

]
(20)
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or for the symmetric case βC = 2, βP = −1 i.e. γ = 2, βC − βP = 3[
X2

X1

]
= (2(R2

1 +R1R2 +R2
2))−1

[
4R2

1R2 +R1R
2
2 +R3

2

4R1R
2
2 +R2

1R2 +R3
1

]
(21)

Partial derivatives are needed for the numerical iteration search amongst

optimal policies (not to optimise any one policy as with smooth pasting) so,

we calculate the Jacobian10 e.g. J(R) =

[
∂X2

∂R2

∂X2

∂R1

∂X1

∂R2

∂X1

∂R1

]
=

1

2
(R2

1 +R1R2 +R2
2)−2

[
4R4

1 + 2R3
1R2 + 2R1R

3
2 +R4

2 3R2
1R2(2R1 +R2)

3R1R
2
2(R1 + 2R2) R4

1 + 2R3
1R2 + 2R1R

3
2 + 4R4

2

]
(22)

4 Iterating from R0 to R†

It is important to re-iterate that for all sets of rules R, the costs X(R) from

equation (16) are associated with R being X’s optimal policy in that the

required conditions at the rules in R have been met. These are consistent

with having maximised values by choosing R to match X (but not X†).

What if we need to know this particular policy that generates X† 6= X(R),

i.e. how do we find R† that satisfies X(R†) = X† where X† are decision cost

values inputted as an iteration target?

With the solution for X (R) as a function of R (equation 16) we now

provide an algorithm to find R†. The search proceeds along a path within

the space of vectors of any R,X toward the special R†,X†. Each point in

the iteration tests an optimal policy, but only the final one will correspond

to the target cost structure X†.

The algorithm contains two parts; firstly the means to determine an initial

rule estimate R0, from which X(R0) is direct. Secondly we show how to

update these R1,X(R1), then R2,X(R2) etc. toward R† and X(R†) = X†.

10In the limit as the two rules approach a common R, this Jacobian tends to a full

two by two matrix of halves. In contrast the sensitivity of X2 − X1 = (R2−R1)3

2(R2
1+R1R2+R2

2)

tends to zero in the difference R2−R1 at zero which is consistent with the double smooth
pasting used in Section 2. N.B. A matrix of second derivatives, the Hessian, determines
the sufficient conditions for value maximisation at that set of rules in R.
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4.1 Initial R0 from asymptotic case

With only the information in a target X† and the structure of the problem

(including betas that are fundamental constants for GBM), we need an initial

rule R0 that determines an appropriate point to start the search for the final

elements of R†. In general, the fully reversible policy associated with R = X

is not a good start point for the iterative search.

For the two rule system in Section 3, we do this by supposing that each

of the decisions rules in R0 were terminal, without further option seeds or

role for onward discounting, i.e. S = 0. Under this scenario, the relation-

ship between value matching for harvest option values H, changes ∆R and

decision costs X would be replaced by H0, ∆R0, X† in equation (23) below.

H0 = ∆R0 − ∆X†[
C(R0

2)

P (R0
1)

]
=

[
R0

2

−R0
1

]
−

[
X†2

−X†1

]
(23)

Since all the harvested options are final, there are no betas from β0
S (i.e.

ignores the effect of options at other rules), so equation (23) shows scaled

smooth pasting conditions at R0 for each of four hypothetical terminal deci-

sions.

β0
H H0 = ∆R0[

βC 0

0 βP

] [
C(R0

2)

P (R0
1)

]
=

[
R0

2

−R0
1

]
(24)

Using equations (23 & 24) to eliminate H0 and solve for R0 from X† gives

equation (25) (the difference matrix is self inverse i.e. ∆−1 = ∆).

R0 = (I−
(
β0
H

)−1
)−1X† =

[
βC
βC−1

0

0 βP
βP−1

][
X†2

−X†1

]
=

[
βC
βC−1

X†2
βP
βP−1

X†1

]
(25)

Note that the rules in R† (which include further seeds) are not terminal

so R0 only approximates R†, i.e. X(R0) 6= X†.

However, if the threshold rules in R† are widely separated in level, it

takes the diffusion Π longer to travel between them and actions at other
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levels are discounted more highly (i.e. discounts and option seeds tend to

zero D,S→ 0) so we would expect R0 to be more accurate the more disperse

the rules in R†.11 Even when iterating for more closely spaced rules, R0 gave

good start points for finding R† in the numerical searches documented here.

The first iteration step depends on the initial estimation error X†−X(R0).

4.2 Updating

From any trial point R, the local change in decision costs to improve the

estimate of R† are given by dX(R) = J(R)dR where the Jacobian J(R)

shown in equation (26) is derived from equations like (22).[
dX2

dX1

]
= dX(R) = J(R)dR =

[
∂X2

∂R2

∂X2

∂R1

∂X1

∂R2

∂X1

∂R1

][
dR2

dR1

]
(26)

R1 = R0 + J−1(X†−X(R0)) etc. until R† gives X(R†) = X†

The second line of equation (26) also shows the updating equation that

forms R1 from R0. This is repeated until convergence is achieved, typically

in a few steps (see the Appendix for a worked example).

4.3 Constraints

Whilst updating it is important not to move from R0 to new rules R1 etc.

that violate any of the embedded constraints, e.g. R1
2 > R1

1 (these imply

constraints on X1
2 > X1

1 ). If this occurs, the discounts in D can exceed their

regular bounds between zero and unity and lose economic meaning. For the

iterations shown in the Appendix, neither R0 nor R1 etc. exited feasible

regions and convergence occurred without violating constraints.

11In the limit as discounts become zero, X(R0) = X† because

X(R) = (I+ (D− I) [βH − βSD]
−1

)R

lim
D→0

X(R0) = (I−
(
β0
H

)−1
)R0 = X†.
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4.4 Stability of fixed point

To ensure that the fixed point of convergence is stable i.e. can be found via

a cobweb method, the modulus of Jacobian entries were summed and tested

e.g.
∣∣∣∂X2

∂R2

∣∣∣+∣∣∣∂X2

∂R1

∣∣∣ < 1 )(this was confirmed for the numerics in the appendix).

Updating and repeating worked well with a small number of steps achieving

four decimal place accuracy.

4.5 Maxima, minima and points of inflection

Finally, to check that the first order conditions (smooth pasting) do not

represent a minimum value (or point of inflection), for the values of X† used,

e.g. R†1 within R†, was perturbed and option values at R2 were seen to

decline (those at R1 remain smooth pasted). That occurred because these

naturally convex options satisfy the second order conditions for optimality.

5 Two way options and reversibility

In this section we look at another way to use a pair of rules R1, R2 other

than to move from one state to another with frictional reversibility. In the

last section we considered having two rules converge at one common R.

Here we assume that at both of these rules reversible action occurs (i.e.

that they each represent the convergence of two other unnamed rules).

Rather than use discounting, this reversibility at two rules requires (each

of) value matching, smooth pasting double smooth pasting and therefore the

gamma of options at R1, R2 will be required.

We will use R1 to turn the first cap flow on and the second higher rule

R2 to switch the flow off, i.e. to exercise a short cap; the second cap has a

higher strike than the first and together the two create a collar or bull spread

between Π = R1 and R2.12

In the region between the two policy points, the flexibility value has func-

tional form K(Π) denoting a combination. This requires two way discounting

12Between the rulesR1 andR2 the flexible flow is floating, with cap and floor terminology
and boundaries x1 and x2 the definition of flexibility value here is consistent with V (Πt)
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to value it. Starting within the region R1 < Π < R2 if the process hits the

upper rule, the flow is switched off by the party who is long this cap who

effectively calls the value in return for paying a fixed sum X2. However if the

process hits the lower boundary first, the bull spread owner uses the com-

bination option to put the floating value over to the party that is short the

lower cap, this means using the combination option to put the floating and

gain the fixed X1 at R1.

To reverse the exit from the region, reversibly, on hitting R1 from below,

the collar gains the floating value in return for paying X1. When hitting the

rule R2 from above, X2 is paid in return for obtaining the floating flow. Using

K(R2) and K(R1) for the value of the combination flex value at these two

rules (P (R), C(R) retain their notation for one way options), value matching

at these two levels implies equation (27).

H = ∆(R−X) + S[
K(R2)

C(R1)

]
=

[
X2 −R2

R1 −X1

]
+

[
P (R2)

K(R1)

]
(27)

Again note that the fixed and floating changes ∆(R−X) and its beta

product both equal ∆R (where ∆ = diag[−1, 1]).

We now need to extend the discounting relationship to accommodate two

possible outcomes between R2 when R1 are met; the discount factors required

are linear combinations of put and call discounts including knock out features.

5.1 Two way discounting

When flexibility indicates that there are two options that can be gained, one

if the state variables increases and one if it decreases, then we label the dual

option a combination, K(Π). This is a linear combination of a special call

of:-∫ ∞
t

ERNt [max(πs, x1)−max(πs, x2)] e−r(s−t)ds = Πt + Floor(πt, x1)− Cap(πt, x2).

Above R2 the flow is fixed but two floors are present, and beneath R1, the flow is also
fixed but two caps are present in long/short pairs.
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on an upper payoff K(R2) and a special put on a lower one K(R1). This can

be seen in equation (28) which shows K(Π) as a discounted combination of

K(R2) and K(R1).

K(Π) = DC (Π, R2, R1)K(R2) +DP (Π, R1, R2)K(R1) (28)

Unlike before, in equation (28) the discount factors DC , DP have three

arguments; the first is the current level (dynamic, if labelled Π but static if

fixed at a rule), the second is the level at which the discount factor achieves

unity and the third the level at which it attains a zero value; that is to say

these special options possess a knock out feature at the third rule in the

argument. This condition of achieving zero worth ensures that when used,

K(Π) depends fully on one harvest value and not on the other in equation

(28).

At Π = R2 the compound option is worth K(R2) (and K(R1) at R1),

but we need the beta, weighted by the re–scaled value at each rule, i.e.

K ′(R2)R2 = βK(R2)K(R2) (etc. R1). Unlike the simple options, for this

compound option, its beta is not constant but depends upon a discounted

combination of βC , βP and the separation of the two thresholds.

The two new discounts in equation (28) can themselves be simplified in

equation (29) as linear combinations of the simple call and put discounts,

here expressed for the GBM discount factors.

DC (Π, R2, R1) = nDC (Π, R2)− lDP (Π, R1) (29)

DP (Π, R1, R2) = nDP (Π, R1)−mDC (Π, R2)

Equation (29) includes normalization constants n =

(
1−

(
R1

R2

)βC−βP)−1

,

l = n×
(
R1

R2

)βC
and m = n×

(
R2

R1

)βP
that depend on the envelope (R2, R1)

but not the state Π. These ensure the complementary boundary conditions

at both rules are met.13

13See Darling and Siegert [13] for the treatment of stopping time expectations condi-
tioned on Π avoiding another rule. For Πt within a pair of rules i.e. R1 < Πt < R2, from
time t stopping times tH > t at ΠtH = Rj to hit one, conditional upon avoiding the other,
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5.2 Beta of options with knock–outs

To evaluate the betas of the knock–out options, we first take the dynamic

equation (29) and apply differentiation and re–scale the result at Π = R2

and Π = R1, that is to say we require D′C,P (Π, ., .)Π as was derived for the

one way case in equations (7, 8).

D′C (Π, R2, R1) Π = nβCDC (Π, R2)− lβPDP (Π, R1) (30)

D′P (Π, R1, R2) Π = nβPDP (Π, R1)−mβCDC (Π, R2)

Now the general dynamic versions of the call and put in the last equation can

be specialised to Π = R2, R1 respectively so as to evaluate the betas there

on K(R2), K(R1).

βK(R2) = D′C (R2, R2, R1)R2 = βC + βC−βP(
R2
R1

)βC−βP−1
> βC (31)

βK(R1) = D′P (R1, R1, R2)R1 = βP + βP−βC(
R2
R1

)βC−βP−1
< βP

Due to the knock out features, these are more extreme betas than the

simple constants βC , βP . These knock out features diminish as the separation

R2/R1 increases; in the limit as the separation is very great, they revert back

to the constant ones, otherwise the expected loss of the (short) option that

is knocked out, increases the beta compared to the non knock out version.

are as follows:-

DC (Πt, R2, R1) = ERNt

[
e−r(tH−t)

∣∣∣ΠtH = R2,min (Πt..ΠtH ) > R1

]
DP (Πt, R1, R2) = ERNt

[
e−r(tH−t)

∣∣∣ΠtH = R1,max (Πt..ΠtH ) < R2

]
They encompass one way factors as a special case (left panel with boundaries at∞, 0) and
two way bounds (right panels).

DC (Πt, R2, 0) = DC (Πt, R2)
DP (Πt, R1,∞) = DP (Πt, R1)

DC (R1, R2, R1) = 0 DC (R2, R2, R1) = 1
DP (R1, R1, R2) = 1 DP (R2, R1, R2) = 0
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5.3 Gammas of options with knock–outs

For double smooth pasting, we also need the gammas defined in the next

equation,

D′′C (Π, R2, R1) Π2 = nγCDC (Π, R2)− lγPDP (Π, R1) (32)

D′′P (Π, R1, R2) Π2 = nγPDP (Π, R1)−mγCDC (Π, R2)

so that

γK(R2) = D′′C (R2, R2, R1)R2
2 = γC + γC−γP(

R2
R1

)βC−βP−1
≷ γC

γK(R1) = D′′P (R1, R1, R2)R2
1 = γP + γP−γC(

R2
R1

)βC−βP−1
≷ γP .

Again we get a basic beta with an envelope enhanced difference but since

both gammas are positive, this does not amplify and can cancel out if the

gammas are equal.

5.4 Smooth pasting with knockouts

We can use these betas to move from value matching in equation (27) to

smooth pasting here.

βKH = ∆R + βKS[
βK(R2)K(R2)

βCC(R1)

]
=

[
−R2

R1

]
+

[
βPP (R2)

βK(R1)K(R1)

]
(33)

This equation fixes the absolute scale of the options to that of the choices

for R. However, we need the double smooth pasting conditions for reversible

action at R1, R2 to fix the relative sizes of the the options there. This involves

the option gammas, and not the gamma of the floating leg which is zero.
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5.5 Double smooth pasting

We need the double differential, double scaled for the gammas.

D′′C (Π, R2, R1) Π2 = nγCDC (Π, R2)− lγPDP (Π, R1) (34)

D′′P (Π, R1, R2) Π2 = nγPDP (Π, R1)−mγCDC (Π, R2)

Now the general dynamic versions of the call and put in the last equation can

be specialised to Π = R2, R1 respectively so as to evaluate the betas there

on K(R2), K(R1).

γK(R2) = D′′C (R2, R2, R1)R2
2 = nγC − nγP

(
R1

R2

)βC−βP
(35)

γK(R1) = D′′P (R1, R1, R2)R2
1 = nγP − nγC

(
R1

R2

)βC−βP
We now use these betas to move from value matching in equation (27) to

smooth pasting here.

γKH = γKS[
γK(R2)K(R2)

γCC(R1)

]
=

[
γPP (R2)

γK(R1)K(R1)

]
(36)

This fixes the relative level of external put call to the internal combination

option. The put and call can be eliminated, leaving the end values of the

combination option, this can be valued from the two smooth pasting condi-

tions which include the levels R1, R2 which is also embedded in the definitions

of the combination betas.

5.6 Other applications

Other extensions include constructing perpetual leader–follower type games

with players maximizing their own claim conditional on others doing the

same. These may involve smooth pasting conditions for each player at the

level where their action is relevant, i.e. a complete set of smooth pasting
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conditions are jointly determined by players.14 Even though such games

may be time invariant, their policies need further investigation for optimality,

unlike the single agent problems here.

6 Conclusion

Discount factors dependent on diffusion dynamics have been used before but

with limited interaction and without a beta interpretation. We extend their

use so that compound options can interact within a decision framework. This

was done by separating the beginning (seed) and end of life (harvest) values

for each option, placing them into vectors and solving with discount and beta

matrices whose size and composition reflect the scale and form of flexibility

present.

Value associated with the option to change cashflows can be represented

using these discount factors because they capture two features of the stochas-

tic dynamics. Firstly, discounts quantify an expectation of the time–value

separation between policy rules when options are created and used. Sec-

ondly, they determine the beta of the option which is key to the smooth

pasting optimal first order conditions at each rule. Second order conditions

for reversibility were derived from gammas (beta times excess beta over one).

When solving this as a linear system, for geometric processes it is easier to

present smooth pasting multiplied by its policy threshold since this produces

option values weighted by their betas and gammas.

It is easier to identify candidate policy rules first and use discounting

and scaled smooth pasting conditions to form explicit solutions for option

values and decisions costs. Comparative statics were also be derived in this

process. Since the fixed decision costs only appear in one set of conditions

(value matching), it is only possible to infer them last.

Having derived the option values, the analytical comparative statics were

used in the iteration process. From a robust iteration start point, an efficient

algorithm was developed to search among optimal policies for the one that

14To see how smooth pasting can encompass leader follower situations, see Bustamente
[8] and [9] for inclusion of a shadow cost of pre–emption.
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matches target decision costs. This facilitates the solution of such systems

and expands the range of problems that can be tackled.
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Appendix

In equation (37), the two discount factors in equation (29) are evaluated at

threshold rules and inserted into the discount matrix that links seed and

harvest vectors (from equation (27), also two simple discounts are used).

S = D H
P (R4)

K(R3)

K(R2)

C(R1)

 =


0 DP (R4, R3) 0 0

DC (R3, R4, R1) 0 0 DP (R3, R1, R4)

DC (R2, R4, R1) 0 0 DP (R2, R1, R4)

0 0 DC (R1, R2) 0



K(R4)

P (R3)

C(R2)

K(R1)


(37)

As well as the four rule value matching equation (27), we require definitions

for smooth pasting matrices βH, βS from equation (37) before the system

can be solved. This is worked through in a numerical example with R =

(4, 3, 2, 1)> and βC = 2, βP = −1.

Other arbitrarily large and more complex or nested structures are possi-

ble, but first we turn to the practical problem of finding R given a special or

target value of X†.
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6.1 Two way beta matrices

Following the definition in equation (37) of the discount matrix with two way

factors, in the first line of the next equation we break out a secondary matrix

that carries the normalization constants l,m, n leaving one way factors only

in the first matrix.

D =


0 DP (R4, R3) 0 0

DC (R3, R4) 0 0 DP (R3, R1)

DC (R2, R4) 0 0 DP (R2, R1)

0 0 DC (R1, R2) 0




n 0 0 −m
0 1 0 0

0 0 1 0

−l 0 0 n

(38)

For the values βC = 2, βP = −1 and rules R = (4, 3, 2, 1)> these evaluate to:-
0.000 0.750 0.000 0.000

0.550 0.000 0.000 0.196

0.222 0.000 0.000 0.444

0.000 0.000 0.250 0.000

 =


0.000 0.750 0.000 0.000

0.563 0.000 0.000 0.333

0.250 0.000 0.000 0.500

0.000 0.000 0.250 0.000




1.016 0.000 0.000 −0.254

0.000 1.000 0.000 0.000

0.000 0.000 1.000 0.000

−0.063 0.000 0.000 1.016


For the inverse, G is given by:-

G =


0 DC (R4, R3) DP (R4, R2) 0

DP (R3, R4) 0 0 0

0 0 0 DC (R2, R1)

0 DC (R1, R3) DP (R1, R2) 0




1 0 0 0

0 n̂ −l̂ 0

0 −m̂ n̂ 0

0 0 0 1


and its numerical version

0.000 2.211 −0.974 0.000

1.333 0.000 0.000 0.000

0.000 0.000 0.000 4.000

0.000 −1.105 2.737 0.000

 =


0.000 1.778 0.500 0.000

1.333 0.000 0.000 0.000

0.000 0.000 0.000 4.000

0.000 0.111 2.000 0.000




1.000 0.000 0.000 0.000

0.000 1.421 −0.947 0.000

0.000 −0.632 1.421 0.000

0.000 0.000 0.000 1.000
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We presented the inverse15 discount or growth matrix G = D−1 that relates

harvest to seed via H = GS. This depends on other normalization con-

stants from R3, R2 i.e. the inner separation; l̂ = n̂ × DP (R3, R2) , m̂ =

n̂×DC (R2, R3) and n̂ = (1−DC(R2, R3)DP (R3, R2))−1.

The dynamic discount factors in equation (29) that depend on the current

state Π can also be treated this way in equation (39).

D (Π) =


0 DP (Π, R3) 0 0

DC (Π, R4) 0 0 DP (Π, R1)

DC (Π, R4) 0 0 DP (Π, R1)

0 0 DC (Π, R2) 0




n 0 0 −m
0 1 0 0

0 0 1 0

−l 0 0 n


(39)

Based on V(Π) = [P (Π), K(Π), K(Π), C(Π)]> a dynamic set of (time t

option) values , equation (39) shows how D (Π) can carry dependency on Π

to portray V(Π) dynamically so V (Π) = D (Π) H. This collapses to S = DH

if the times in V (Π) are matched against seed rules.

The times (t) at which Π(t) encounters each row is different and these

options do not exist at the same time but it is convenient to present them

this way to calculate the required betas.

6.2 Betas from scaled differentials

We wish to evaluate the beta of a vector of values V (Π) each at an arbi-

trary time. This is done by applying the definition of the beta V ′(Π)Π =

Π∂V (Π)/∂Π = βV (Π)V (Π) to both sides of all vector elements in V (Π) =

D (Π) H. This is done in equation (40), a vector analogue of equation (2).

Since the elements in H are fixed, they are treated as constant; the sensi-

tivity of a vector of values depends only on the sensitivity of its discount

15The inverse discount or growth matrix G contains factors greater than one such as
DC (R2, R1) = (R2/R1)

βC > 1 (because R2 > R1). The three argument, two direction
growth factors also have magnitude greater than unity. Multiplying GD gives I, some ele-
ments give unity straight away (one way options e.g. for the put DP (P3, P2)DP (P2, P3) =
1) but the two way options take more algebraic expansion before reducing to 1 or cancelling
to 0.
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matrix not its harvest values – this is a multivariate equivalent of previous

specifications.

V′ (Π) Π = βV(Π)V (Π) = D′ (Π) H (40)

In the first row of the next equation, to determine D′ (Π) we apply the beta

operation to equation (39) (normalization l,m, n weights remain unchanged).

Then to generate static D′ in the second row of the next equation we special-

ize the choices of Π to seeds; this results in the GBM betas βP , βC appearing

before their discounts in the second row of the next equation.

D′(Π)Π =


0 βPDP (Π, R3) 0 0

βCDC(Π, R4) 0 0 βPDP (Π, R1)

βCDC(Π, R4) 0 0 βPDP (Π, R1)

0 0 βCDC(Π, R2) 0




n 0 0 −m
0 1 0 0

0 0 1 0

−l 0 0 n



D′(R)R =


0 βPDP (R4, R3) 0 0

βCDC(R3, R4) 0 0 βPDP (R3, R1)

βCDC(R2, R4) 0 0 βPDP (R2, R1)

0 0 βCDC(R1, R2) 0




n 0 0 −m
0 1 0 0

0 0 1 0

−l 0 0 n


and its numerical values:-

0.000 −0.750 0.000 0.000

1.164 0.000 0.000 −0.624

0.540 0.000 0.000 −0.635

0.000 0.000 0.500 0.000

 =


0.000 −0.750 0.000 0.000

1.164 0.000 0.000 −0.624

0.540 0.000 0.000 −0.635

0.000 0.000 0.500 0.000




1.016 0.000 0.000 −0.254

0.000 1.000 0.000 0.000

0.000 0.000 1.000 0.000

−0.063 0.000 0.000 1.016


Specializing value V to seed rules in equation (40) takes the vector of

values V (Π) to S and V′ (Π) to S′ which are the beta weighted values at the

seed rules. This implies equation (41) from which a definition of the beta

matrix βS for options at their seed points is drawn as a product of D′ (in the
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second row of the prior equation and G.

βSS = S′ = D′H = D′GS⇒ βS = D′G =


−1.000 0.000 0.000 0.000

0.000 3.263 −2.842 0.000

0.000 1.895 −2.263 0.000

0.000 0.000 0.000 2.000

(41)

Similarly the beta operation applied to the growth matrix gives G′ (Π) =
0 βCDC (Π, R3) βPDP (Πt, R2) 0

βPDP (Π, R4) 0 0 0

0 0 0 βCDC (Π, R1)

0 βCDC (Π, R3) βPDP (Πt, R2) 0




1 0 0 0

0 n̂ −l̂ 0

0 −m̂ n̂ 0

0 0 0 1




0.000 5.368 −4.079 0.000

−1.333 0.000 0.000 0.000

0.000 0.000 0.000 8.000

0.000 1.579 −3.053 0.000

 =


0.000 5.368 −4.079 0.000

−1.333 0.000 0.000 0.000

0.000 0.000 0.000 8.000

0.000 1.579 −3.053 0.000




1.000 0.000 0.000 0.000

0.000 1.421 −0.947 0.000

0.000 −0.632 1.421 0.000

0.000 0.000 0.000 1.000


from which G′ at harvest can be specialized and then derive for βH.

βHH = H′ = G′S = G′DH⇒ βH = G′D =


0.000 0.750 0.000 0.000

0.550 0.000 0.000 0.196

0.222 0.000 0.000 0.444

0.000 0.000 0.250 0.000

(42)

Finally, the matrix whose inverse must be applied to the payoff vector ∆R
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is given by:-

H = [βH − βSD]−1∆R =


2.048 0.000 0.000 −0.762

0.000 −1.000 0.000 0.000

0.000 0.000 2.000 0.000

0.190 0.000 0.000 −1.048


−1 

−4

3

2

−1

 =


−1.371

−1.107

0.479

0.477



S =
[
βHD−1 − βS

]−1
∆R =


2.048 0.000 0.000 −0.762

0.000 −1.000 0.000 0.000

0.000 0.000 2.000 0.000

0.190 0.000 0.000 −1.048


−1 

−4

3

2

−1

 =


−0.830

−0.661

−0.093

0.120



∆X = ∆R + S−H =


−4

3

2

−1

+


−0.830

−0.661

−0.093

0.120

−

−1.371

−1.107

0.479

0.477

 =


−3.459

3.446

1.429

−1.357



6.3 Example path

For the target values X† = [4.0,−2.5, 2.5,−1.0]>), the starting values in

R0 were [16, 2.5, 10, 1]> were used. These are policy rules consistent with

X(R0) = [4.2481, −2.2131, 2.5676, −0.9257]>. From this, the error to target

X† is dX = [−0.2481, −0.2869, −0.0676, −0.0743]> which had the inverse

Jacobian applied to generate R1 etc.

In Table (1), the sequence from X† and R0(X†) is shown with R1, X(R1)

etc. proceeding toward X(R3). Generating four decimal place accuracy for

X†, R3 = [14.5803, 2.9261, 9.6718, 1.0913]> is taken as a close approximation

of R† where X(R†) = X†. The last line of Table (1) quantifies the sum of

slopes for the fixed point stability criteria (all less than one).
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R4 or X4 R3 or X3 R2 or X2 R1 or X1

X† 4.0000 −2.5000 2.5000 −1.0000
∆−1β0

H(β0
H − 1)−1 4 −1 4 −1
R0
(
X†
)

16.0000 2.5000 10.0000 1.0000
X(R0) 4.2481 −2.2131 2.5676 −0.9257

dX −0.2481 −0.2869 −0.0676 −0.0743
R1 14.6479 2.9003 9.6759 1.0899

X(R1) 4.0101 −2.4833 2.5008 −0.9989
dX −0.0101 −0.0167 −0.0008 −0.0011
R2 14.5806 2.9260 9.6718 1.0913

X(R2) 4.0000 −2.4999 2.5000 −1.0000
dX 0.0000 −0.0001 0.0000 0.0000
R3 14.5803 2.9261 9.6718 1.0913

X(R3) 4.0000 −2.5000 2.5000 −1.0000∑4
i=1

∣∣∣∂Xi∂Rj

∣∣∣ 0.4463 0.7449 0.3837 0.8437

Table 1: A sample path iterating from R0
j to R†j, i.e. from −X3, X2 =

(−2.2131, 2.5676) to (−2.500, 2.500)
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